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MULTILEVEL ADDITIVE SCHWARZ METHOD 
FOR THE h-p VERSION OF THE 

GALERKIN BOUNDARY ELEMENT METHOD 

NORBERT HEUER, ERNST P. STEPHAN, AND THANH TRAN 

ABSTRACT. We study a multilevel additive Schwarz method for the h-p version 
of the Galerkin boundary element method with geometrically graded meshes. 
Both hypersingular and weakly singular integral equations of the first kind are 
considered. As it is well known the h-p version with geometric meshes con- 
verges exponentially fast in the energy norm. However, the condition number 
of the Galerkin matrix in this case blows up exponentially in the number of 
unknowns M. We prove that the condition number K(P) of the multilevel ad- 
ditive Schwarz operator behaves like O( M log2 M). As a direct consequence 
of this we also give the results for the 2-level preconditioner and also for the h-p 
version with quasi-uniform meshes. Numerical results supporting our theory 
are presented. 

1. INTRODUCTION 

In this paper, we deal with a multilevel additive Schwarz method for the h-p 
version of the Galerkin boundary element method applied to both hypersingular 
and weakly singular integral equations. The boundary integral operators under 
consideration are the single layer potential operator and the normal derivative of 
the double layer potential operator on a polygon F in R2. That means we have to 
consider weak formulations of the form 

a(u,v):= (Au,v)= (g,v) for all v E ,+,/2(]), 

where A Hs+(t/2(F) ,- H'-,/2(F) is symmetric and positive definite. (The 
definitions of the Sobolev spaces Hs+(/2(F) and Hs-a/2(F) are given in ?2.) Here, 
(., -) denotes the L2 (F) inner product. In order to obtain an approximant UM to 
u we solve the equation on a finite dimensional subspace VM C f1s+a/12(r), that is 
we will find UM c VM/ satisfying 

(l.l) (~~~AUM, V) = (9, V) for all v E VM. 
The condition number of the above linear system grows at least like h-1p2 if the h-p 
version is used for quasi-uniform meshes, and exponentially for geometric meshes. 
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Here h is the mesh size and p is the degree of the splines used in the Galerkin scheme. 
In order to use the conjugate gradient algorithm to solve the system efficiently we 
need a preconditioner. We shall study in this paper additive Schwarz methods as 
preconditioners' for the above system. 

Additive Schwarz methods were originally designed for finite element discretiza- 
tions of differential equations (see e.g. [1], [2], [6], [5], [10], [18], [21], [29], [30]). The 
applicability of the method with overlapping domains was recently investigated in 
[13] for the h version of the boundary element method. Non-overlapping 2-level 
and multilevel methods (also for the h version) were considered in [26]. For the p 
version corresponding first results (of the 2-level method) for weakly singular inte- 
gral operators were presented in [15]. A thorough investigation of the method was 
discussed in [24] for both hypersingular and weakly singular operators. The results 
in [26], [24] can be summarized as follows. For the h version the 2-level and multi- 
level additive Schwarz methods yield preconditioned systems which have bounded 
condition numbers. For the p version considered in [24] the condition number is 
proved to behave like (1 + logp)2. 

In this paper we prove the efficiency of the 2-level and multilevel methods for 
the h-p version, with both quasi-uniform and geometric meshes. Our main results 
concern the multilevel additive Schwarz method for the h-p version with geometric 
meshes, cf. Theorems 3.1 and 4.1. More precisely, we will prove that when the 2-level 
and multilevel methods are used with quasi-uniform meshes, the condition number- 
of the resulting system behaves like (1 + log p)2 and p (1 + log p)2, respectively. 
When the above two methods are used with geometric meshes, the improvement 
is even more. Instead of an exponential increase in the condition number, we will 
have the behavior log2 M and VMlog2 M for the 2-level and multilevel methods, 
respectively. Here M is the number of unknowns of the system. We note here that 
even though the condition number of the multilevel method increases faster than 
that of the 2-level method, which may lead to a bigger number of iterations to solve 
the linear system, the implementation of the multilevel method is recommended 
since for each iteration it is actually the diagonal preconditioner, and is therefore 
cheaper for each iteration. 

The paper is organized as follows. In ?2 we describe the three versions of the 
boundary element method for the hypersingular and weakly singular integral equa- 
tions and give the general setting of the additive Schwarz method. Section 3 gives 
the analysis of the multilevel additive Schwarz method for the hypersingular integral 
operator. We also collect the results for the 2-level method and for quasi-uniform 
meshes which are implicitly covered by the theory of the multilevel method for the 
h-p version with geometric meshes. In ?4 we treat the weakly singular integral 
operator in the same manner. Numerical results are given in ?5 to underline our 
analysis. 

In this paper, c denotes a generic constant and may take different values at 
different occurrences. 

2. PRELIMINARIES 

In this section we briefly introduce the different versions of the boundary element 
method and describe the additive Schwarz method for preconditioning the arising 
linear systems. 
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The hypersingular and weakly singular integral equations we consider are, re- 
spectively, 

(2.1) Du(x) XyX , 

and 

(2.2) V (x) : u(Y) log x-yldsy =g(x), x IF, 

where f.p. denotes a finite part integral in the sense of Hadamard. The right hand 
side g is given in H-I/2(F) in the case of the hypersingular operator, and in H1/2(r) 

in the case of the weakly singular operator. 
In the following we introduce the needed Sobolev spaces for a general, possibly 

open, Lipschitz curve IF C RI2. Let F be an arbitrary closed curve containing F. We 
define, as in [12], the Sobolev spaces 

( {X1 p; $El H7+l/2(]R2)} (s > O), 

Hs(r) =L2 (r) (s = o), 

I(H-s(f))/ (dual space) (s < 0). 
Further, we define for positive s 

Hs(F) = ~{1r; b E Hs(F)}, 

HS(F) = {E HS(F); supp() C I 

and for negative s 

Hs(F) =(HS())/ HS(F) (H-s(F))/. 

In this paper we consider polygons F for the integral equations (2.1) and (2.2). 
Since then F is closed the spaces HS (F) and HS(F) coincide. 

The operator V: H1-/2(r) -) H'/2(r) is continuous and positive definite which 
can always be achieved by an appropriate scaling of F, cf. [8], [25]. The operator 
D: HI/2(F) -> H-1/2(F) is continuous (see [8]) and due to the relation 

(Dv,v) = (VV',V'), v E Hl/2(F) 

(see [19]), D is positive definite on 
- 

(F) {V E H1/2(F); (VK 1) = ?} 

see also [7]. Hence the operators V and D define norms which are equivalent to 
the H-1/2 (F)-- and H1/2 (F)-norms, respectively. These equivalences are frequently 
used in the proofs. Since D is positive definite only on Ho72 (F) we always assume in 
the following that, in the case of the hypersingular operator, the space VM in (1.1) 
is a subspace of Ho72 (F). We note that instead of this conformity condition one 
can also consider a modified system for D by introducing another scalar unknown, 
cf. [9]. 

Different choices of the trial space VA/I in (1.1) give rise to different types of the 
Galerkin scheme, namely to the h, p, and h-p versions defined as follows. Consider 
a uniform mesh of size h on F defined by the nodes 

(2.3) {xj, j=O,... ,N} with lxj-xp_qI=h and XO=XN. 

We assume that the corners of the polygon F coincide with some nodes. 
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The h version. We define on the mesh (2.3) the space Vh of continuous piece- 
wise linear functions (piecewise constant functions, respectively) for the hypersin- 
gular operator (weakly singular operator, respectively). For the h version of the 
Galerkin scheme the solution of (1.1) is approximated by functions in Vh and the 
accuracy is increased by reducing h. 

The p version. On the mesh (2.3) the space VP is now defined as the space of 
functions on F whose restrictions on Fj := (xj1, xj), j = 1,... ,N, are polyno- 
mials of degree at most p. For the hypersingular operator it is required that these 
functions are continuous. For the p version of the Galerkin scheme the solution of 
(1.1) is approximated by functions in VP and the accuracy of the approximation is 
increased not by reducing h (which is fixed) but by increasing p. 

The h-p version. If we combine the above two versions we end up with the 
h-p version on quasi-uniform meshes. This version works even more efficiently 
if one uses geometrical mesh grading towards the corners of F (where in general 
singularities of the exact solution occur) and appropriately chooses the polynomial 
degree on each subinterval. In doing so, one obtains exponentially fast converge.nce 
in the energy norms, i.e. for the Galerkin solution UM of (1.1) there holds 

IIU - UMIl/2(P) < Ceb 

in the case of the hypersingular operator (u is the exact solution of (2.1)) and 

- U-M||H-1/2(F) ? 

in the case of the weakly singular operator (u is the exact solution of (2.2)). The 
positive constants C and b are independent of the dimension M of the ansatz space. 
Due to this exponentially fast convergence the h-p version with geometric meshes 
is superior to the standard h, p and h-p versions with quasi-uniform meshes, which 
converge only algebraically. Concerning the convergence theory we refer to [28], 
[25], [22], [23], [4], [3], [17], [16]. 

We will define the ansatz space for the h-p version with geometric meshes on 
(-1, 0). Here we refine the meshes in a geometric manner towards -1. On (-1, 1) 
the geometric meshes are defined by symmetry. The space on the whole polygon 
F can then be obtained by affine mappings of (-1,1) onto the edges of F. On the 
interval (-1, 0) we use the partition 

(2.4) -1 = XO < XI < ... < XK = O, 

where xi =-1 + a K-i, i 1,... ,K, for a constant 0 < a < 1. The mesh grading 
parameter a E (0,1) steers the geometrical grading towards the corner (in this case 
towards -1). The number K is usually called the number of levels of the geometric 
mesh. The ansatz space V.K (on (-1, 0)) is now spanned by piecewise polynomial 
functions on (-1, 0) whose restrictions on (xj 1,xj) are polynomials of degree at 
most pj, j = 1, ... , K. The degree pj is defined as pj = j for the hypersingular 
operator, and as pj = j-1 for the weakly singular operator. On F the space V1<' is 
obtained by affine mappings as mentioned above. For the hypersingular operator 
it is also required that the trial functions are continuous. 

In order to be clear we recall the following notations. In general M is the 
dimension of the ansatz space which is denoted, by relating to the method under 
consideration, by VM, Vh, VP, and VJYK, simultaneously.; The number of elements 

Fj of the mesh is denoted by N, i.e. F-UF 1 IF. In the case of geometric meshes 
we have the variable K which is the number of levels in (2.4) and which is, for 
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simplicity, assumed to be the same for all the corners of the polygon F. Since the 
number of edges of F is fixed for a specific problem we have the equivalence K N. 

We are now giving the general setting for the additive Schwarz method for pre- 
conditioning the linear system (1.1). Let 

(2.5) VM V0 V1O-V + + VN 

denote a decomposition of VA1/ into subspaces Vj. The additive Schwarz method 
(ASM) consists in solving, by an iterative method, the equation 

(2.6) PUM := (PO + P1 + -+ PN)UM = fA/, 

where the projections Pj: VM A Vj, j = O,... ,N, are defined for any VM E VM 
by 

(2.7) a(Pj vM/i, b) =a(vAf, qj) for any c- E Vj1. 

The right hand side of (2.6), fM Z 0 PjUM, can be computed without knowing 
the solution UM of (1.1) by 

(2-8) a(Pjum, ) = (g,0j for any 0 E Vj, j =O,...,N. 
The following lemma is standard in proving bounds for the maximum and minimum 
eigenvalues of the additive Schwarz operator P defined by (2.5), (2.6), (2.7), and 
(2.8), see e.g. [18], [20], [21], [29], [30]. 

Lemma 2.1. Let VuM =Z7=OVM,j, where vmI, E Vj, be a representation of an 
element of VM = Vo + -+ VN. 

(i) If a representation can be chosen such that, for some Ci > 0, 
N 

Za(vm ,j,vA/I,j) < C0la(vM,vMi), 
j=o 

then Aminl (P) > Ci. 
(ii) If there exists C2 > 0 such that for any representation of VM 

N 

a(vM, VM) < C2 Z a(vMj, vM,), 
j=O 

then Amax(P) < C2. 

3. PRECONDITIONERS FOR THE HYPERSINGULAR INTEGRAL EQUATION 

In this section we deal with the h-p version of the boundary element method 
for solving the first kind integral equation (2.1) with the hypersingular integral 
operator. The h-p version with geometrically graded meshes yields an exponentially 
fast convergence in the energy norm, cf. [4], [3], [17], [16]. However, such a fast 
convergence is at the expense of an exponentially fast increasing condition number 
of the Galerkin system. Therefore, it is necessary to design preconditioners in order 
to solve the systems efficiently. 

We first investigate a multilevel additive Schwarz preconditioner for the h-p 
version on geometric meshes (Theorem 3.1). A direct consequence are the results 
for the 2-level method (Corollary 3.3) and for the 2-level and multilevel methods 
for the h-p version with quasi-uniform meshes (Corollaries 3.4 and 3.5). Since 
the additive Schwarz method is generally defined by (2.5), (2.6), (2.7), and (2.8) 
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it suffices to give for each preconditioner the decomposition of the ansatz space 
corresponding to (2.5). 

Let us start with the decomposition 

VK Vl @ VP 

of the ansatz space VJK of the h-p version with a geometric mesh. Here V1 denotes 
the piecewise linear part of V[ and VP C VK denotes the space spanned by the 
piecewise polynomials of higher degrees q, q > 2. The theory of standard h version 
preconditioners cannot be applied to the block corresponding to the subspace V1 
since the mesh is non-quasi-uniform. However, we note that dim V1 = N (the 
number of elements) and 

N K K 

(3.1) dimVP = E(p. -1) (pj -1) Z -1) K2 A2. 

j=l j=l j=l 

Therefore, the size of the h-block (which is proportional to N x N) is small compared 
to the size of the p-block (which is proportional to N2 x N2). For that reason it is 
practical to directly invert the block corresponding to V1. 

The block corresponding to VP is first decomposed with respect to the elements 

Fj, i.e. 

(3.2) Va V eVle...eVN 

This can be considered as a 2-level method. The space VTj is spanned by the 
affine images onto Fj of the functions L2... , Lpj, where Lk is defined as Lk (x) 

f Lk - (y) dy with Lk-l being the Legendre polynomial of degree k - 1. Note 
that Lk vanishes at ?1 and therefore functions in VTj vanish at the endpoints of J 
Fj. These functions are then extended to be 0 outside Fj. We also note that, for 
i, j = 1, ... , N, i - j, n 1 VPj = {0} (because of the difference in the polynomial 
degrees) and ViPi n V -P- {O} (because of the disjoint supports) 

In the next step we define the multilevel decomposition by separating the basis 
functions on the different elements, 

N Pj 

(3.3) VK - Vle (D e k) 

j=l k=2 

Here, the space V19 is spanned by the affine image onto Fj of Lk. 
For the multilevel additive Schwarz operator there holds the following theorem. 

Theorem 3.1. The additive Schwarz operator P associated with the multilevel de- 
composition (3.3) for the h-p version with geometric meshes has condition number 
bounded as 

rn(P) < CK log2 K Mlog2M. 

Here, K, which is proportional to the square root of the number of unknowns M, 
is the number of levels of the geometric mesh which is also the highest degree of the 
polynomials used. The positive constant C is independent of K. 

Before proving Theorem 3.1 we present a lemma which will be used to split 
boundary element functions with respect to the polynomial degrees to prove bounds 
for the maximum and minimum eigenvalues. 
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Lemma 3.2. Let Ilk = CkLk where L* = 
Lk/1|k11L2(I) with I (-1, 1), and 

- Ek=2 Uk. Then there exist positive constants Ci and C2 independent of the 
polynomial degree such that 

p 

U1 lI /2(I) ? 1 
1U2 Hl/2(I) 

< C2P IIUIH1/2(Iy 

k=2 

Proof. Since 

Il|Uk H12 I C2 z J 2H 1 (I)2 C2 L 2 
(1l Uk ~~l~Ck kC 1 

Ilk L2(I) 

and 

p p 
II I2 112 Ck C2 

II Uk 2( Lk 
I IU II 1 I) || E Uk lHl( I) = I11E jjLkk L2|(| 

L2 
(I) 

P c2 

-E 2 ) L2(I) 

we have 

p 

(3.4) IIUH(I) U lUkl(I). 

k=2 

We will prove 

p 

(3.)cUL2 L LUk L2(I)o- 

k=2 

It is easy to check that (cf. [21], [24]) 

for k I > 2, 

(L ,L* )L2(I) -2 (2k-")(2k+5) for I k + 2, k > 2, k 1 2 V ~~(2k-1) (2k?3) 

0 O otherwise. 

We then have 

p p p p-2 

IL2(I) ZZ:CkC1(LKk,ILu L2(I) Zck + 2 CkCk+2K(LJ, LJ+2)L2(I) 
k=2 1=2 k=2 k=2 

p-2 (2k -3)(2k +-5) 
(3.6) ZC2k-ZCkCkk+2 (2k-1)(2k-3) 

k=2 k=2 

Therefore we have 

p 1p-2 1p-2 p p 

UIL2() < ZCk - k + 9 Ck+2 < 2Zc - 2 
|:UkkL2(i) 
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which proves the left inequality in (3.5). To prove the right inequality in (3.5) we 
observe that from (3.6) we have 

2 P 2 pi -2 /(2k-3)(2k+i5) 1/2P C2 (2k-3)(2k+5) 1/2 

||U|| L2(I) ? S 
C (5 C/V (2k -1)(2k + 3) ) (/ dk?2V (2k -1)(2k + 3)) 

_I1 > EC2 PE C2 /2k -3) (2k + 5) )1/2 P C2 (2k- 3)(2k + l / k=21) k=2k 

k= ( k=2 (2k-1)(2k + 3) k= (2k-5)(2k-1) ) P c2 1P C2 (2k -3)(2k + 5) 12 
P C212k -7)(2k + 1)12 

k_ k (2k- 2k + 3) 2E 3_ (2k-5)(2k-1)) 
and therefore we need to show that there exists a constant c > 0 independent of p 
such that 

This can be seen by noting that 

im k2(1 1 /(2k-3)(2k+5) 1 (2k-7)(2k-1) 2 3 
k 2oo k 2 (2k- 1)(2k +-3) 2 (2k5)(2k-1) J 2 

Thus we showed the right inequality of (3.5). Applying interpolation to (3.4) and 
(3.5) we obtain the desired results. Therefore the lemma is proved. EZ 

Proof of Theorem 3.1. Let 

N~~ ~~ P 

UKn = u1?+ 5 5 Uk>j k E k 

j=l k=2 

where Uk,s e Vth, accordingly to (3.3). Since (3.3) is a direct sum decomposition 

this representation is unique. Let wp. Z:= J. L2 Ek-uk and ui := = Ek uk,j, 

j 1,... N. Then ui c H1/2(F) is the restriction of wp onto Fe. 
As the first step of the proof we note that there holds with Pmax 

max{pj; j=1,.. ,N} 
N 

Eli (1 -1-+ log p1ax<) (a (uil, Ua1) -+-S a(ui, i ) ) 

(3.7) i-=1 

K~~~~~~ 

<a(u,Uc) ? 02(a(U,k U) Vu 
j=l 

The right inequality of (3.7) is due to the norm property 
N 

(3.8) alN.hn l/2(p) ite? r 2iifw/2(rI) 
j=1 

for general decompositions of F into subintervals mj and for functions t y H1/2(F) 
such that a c H1/2(Fj) (cf. [14, Lemma 4] and [27, Lemma 3.3]). The constant 
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c is independent of the function u and of the number of subintervals N. The 
left inequality of (3.7) has been proved in [24, Lemma 3.6] to bound the minimum 
eigenvalue of an additive Schwarz operator for the p version of the boundary element 
method. The quasi-uniformity of the mesh was not required in that proof. Therefore 
this estimate holds also for the geometric mesh by inserting as the worst case the 
maximum polynomial degree Pmax. 

The second step of our proof consists in separating the estimates in (3.7) with 
respect to the polynomial degrees. By using Lemma 3.2, and considering only the 
reference interval I, we obtain 

Pj Pj Pj 

ClP E |JUk,j fl/2() < EILUk, 1l/2(r < C2 E lUk,j fl/2(r- ) 
k=2 k=2 k=2 

This is equivalent to the relations 
Pj Pj 

(3.9) clp E a(uk,j, Uk,j) < a(u, u) < c2 E a(uk,j,uk,j). 

k=2 k=2 

Combining (3.7) and (3.9) we obtain 
N Pj 

C, (I + 109Pmax )2pmlx (a(ul, ul) aE(Uk, j,Uk,J)) < a(UK ,u U) 

j=l k=2 

and 
N Pj 

a(uK, uK) < C2(a(ul, ul) + E a(uk, -, Uk,j)) 
j=1 k=2 

Therefore, using Lemma 2.1, we obtain 

Amin (P) > Cl Pmax (1 + log Pmax)2 and Amax (P) < C2, 

i.e. 

Nh(P) < (C2/Cl) Pmax (1 +A logPmax)2 K log2 K. 

Concerning the number of unknowns we note that 

M = dimVfK = dim V1A +dim VP K2, 

cf. (3.1). Therefore the theorem is proved. EZ 

When omitting the decomposition with respect to the polynomial degrees we 
just have the 2-level method given by (3.2). Then we directly obtain from (3.7) the 
following estimate for the condition number. 

Corollary 3.3. The additive Schwarz operator P associated with the 2-level de- 
composition (3.2) for the h-p version with geometric meshes has condition number 
bounded as 

i;(P) < C log2K log2 M. 

The positive constant C is independent of K. 

We note that even though the behavior of the condition numb6r of the multilevel 
operator is not as good as that of the 2-level operator, it is worth applying the 
multilevel method since it is actually the diagonal preconditioner for the p-block of 
the Galerkin matrix. 
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Obviously the above 2-level and multilevel additive Schwarz methods can be ap- 
plied to the h-p version with quasi-uniform meshes as well. We just have to assume 
that the polynomial degrees are everywhere the same, pj = p (j = 1, ... , N), and 
that the mesh is quasi-uniform. For the 2-level method we obtain the following 
corollary. 

Corollary 3.4. The additive Schwarz operator P associated with the 2-level decom- 
position (3.2) for the h-p version with quasi-uniform meshes has condition number 
bounded as 

K(P) < C (I + logp)2. 

The positive constant C is independent of p. 

When considering quasi-uniform meshes we can also use a multilevel decompo- 
sition of the space V1 of the piecewise linear functions. This decomposition was 
considered in [26]; we briefly recall it here. We consider a sequence of mesh sizes 
hl, I = 1,... ,L, where hl-l = 2hl, 1 = 2,... ,L and hL = h. Let Nh1 denote t-he 
number of elements of the mesh with size hl. The decomposition of V1 is then 
given by 

L 

(3.10) V = Vhl + Z(Vh,l + + Vhl+Nhl) 
1=2 

Here Vh1 is the coarse grid space of continuous piecewise linear functions on the 
mesh with size h1 and Vhl,j = span{qhij} where qh1,j is the hat function which 
takes the value 1 at the jth node and the value 0 at the other nodes of the mesh 
with size hl, 1 = 2,... , L. The result is the following. 

Corollary 3.5. The additive Schwarz operator P associated with the multilevel 
decomposition given by the combination of (3.3) and (3.10) for the h-p version with 
quasi-uniform meshes has condition number bounded as 

r(P) < Cp (1 + logp)2. 

The positive constant C is independent of p and L. 

Proof. Again, we apply Theorem 3.1 to a uniform polynomial degree distribution 
and a quasi-uniform mesh and note that the multilevel additive Schwarz precondi- 
tioner given by the decomposition (3.10) is optimal independently of the number 
of levels L and the mesh size h, cf. [26, Theorem 2.9 and Remark 2.10]. C] 

4. PRECONDITIONERS FOR THE WEAKLY SINGULAR INTEGRAL EQUATION 

In this section we consider additive Schwarz preconditioners for the Galerkin 
equations discretizing the weakly singular integral equation (2.2). As in the previous 
section the main result concerns a multilevel additive Schwarz preconditioner for 
the h-p version with geometric meshes (Theorem 4.1). Again we also collect the 
results for the 2-level method (Corollary 4.2) and for the h-p version with quasi- 
uniform meshes (Corollaries 4.3 and 4.4). Recall that we are now dealing with 
functions in H-/2 (F) which need not be continuous. 

First let us consider a 2-level and a multilevel decomposition of the ansatz space 
V,J which consists of piecewise polynomials of different degrees on a geometric 
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mesh with K levels as described in ? 1. The 2-level method is again based on a 
decomposition into the elements Fj, 

(4.1) vK ... V l D vPN 

The space V0 contains the piecewise constant functions. The space Vj is spanned 
by the affine images onto Fj of the Legendre polynomials L1,... , Lpj, j = 1,... , N. 
All functions are assumed to be extended by 0 onto the whole boundary F. The 
decomposition (4.1) is obviously a direct one. For the multilevel method we further 
split the subspaces Vp, j 1, ... , N, with respect to the degrees, 

N P3 

(4.2) v 
v 

ED ( @ o ee k). 
j=1 =1 

The space 17k iS spanned by the affine image onto IF of the Legendre polynomial 
of degree k, j = 1, . .. ,N, k = 1, . .. ,pj. 

For the multilevel additive Schwarz preconditioner there holds the following re- 
sult. 

Theorem 4.1. The additive Schwarz operator P associated with the multilevel de- 
composition (4.2) for the h-p version with geometric meshes has condition number 
bounded as 

,s(P) < CK log2 K M log2 M. 

Here, K is the number of levels of the geometric mesh which is proportional to the 
square root of the number of unknowns M. The positive constant C is independent 
of K. 

Proof. Let 
N Pj 

uK = UO+ Ukj EVK 

j=1 k=1 

where Ukj E V!k, accordingly to (4.2). Since (4.2) is a direct sum decomposition 

this representation is unique. Let wz := Z- Epj-1 Uk,j and uj : k 1 Ukj, 

j 1,... ,N. Then u3 E H-1/2(Fj) is the restriction of wp onto Fj. 
We first note that there holds 

N 

Ci (1 + logpnax)2 (a(uo, uo) + E a(uj, uj)) 

(4.3) j=1 
N 

< a(,t<K, K) < C2(a(uo, uo) + E a(uj, uj)). 
j=1 

The right inequality holds due to the same argument as in the proof of Theorem 3.1 
by noting that an estimate analogous to (3.8) is also true of the H-1/2-norm. The 
left inequality has been proved in [24, Lemma 4.31 for the p version. Of course, 
in order to deal with a non-uniform h-p version, we have to insert the maximum 
polynomial degree Pmax 

To split with respect to the polynomial degrees we proceed as follows. We note 
that there holds (cf. [13]) 

(4.4) jVIvjjH1/2(r) 'JIVjjH1/2(P) 
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for all functions v E Ho1/2(r) where 

ft-1/2() {= V E f-l/2(r); (V, 1) = ?}, 

and I denotes the antiderivative operator which is bounded on Ho 1/2(() and has 
bounded inverse. Therefore, instead of dealing with the H-1/2-norm of piecewise 
Legendre polynomials, we can consider the H1/2-norm of antiderivatives of Le- 
gendre polynomials which are in fact the basis functions used for the hypersingular 
operator. Let us consider the function uj = wp3Ii which can be expanded by affine 
images Lkj of the Legendre polynomials Lk, k = 1,... ,pj. We normalize these 
basis functions by the factors 1/1jjk+?1jL2(_1j) (Lk+l is the antiderivative of Lk, 
cf. ?3). The expansion looks like 

Pj Lk 

k=1 CLk +?1 IL2(-1 ,) 

Due to (4.4) we obtain, by denoting the affine image of L Ik+?1/1jk+1jjL.(I) 
onto Fj by L*k+l,j' 

Pi ILk P 

|| 8II 1/2 (USj) -II I 1Ck?1 HI/2(rj) CkL+?,j IIH1/2(F3 ) 
k=1 IlLk+1IL2( 1,J)k=1 

Together with Lemma 3.2 and the relation Uk,j = CkI?l j this yields 

Pj Pj Pj 

Clpj E JjUk)j JH-1/2([Ij) < ||kJ |-1/2(][ ) <- C2 E ||Uk,j||2H_1/2(][ ) 
k=1 k=1 k=1 

which is equivalent to 
Pj Pi 

(4.5) clp-l , a (Uk,j, Uk,j) < a (uj, Ui) < C2 E a (Uk,j, Uk,j)- 
k=1 k=1 

Combining (4.3) and (4.5) and proceeding as in the proof of Theorem 3.1 we obtain 
the desired estimate for the condition number. D 

As for the hypersingular operator we also consider the 2-level decomposition and 
directly obtain the following bound for the corresponding condition number. 

Corollary 4.2. The additive Schwarz operator P associated with the 2-level de- 
composition (4.1) for the h-p version with geometric meshes has condition number 
bounded as 

iK(P) < C log2 K log2 M. 

The positive constant C is independent of K. 

When applying the 2-level method to the h-p version with quasi-uniform meshes 
the result is given by the next corollary. 

Corollary 4.3. The additive Schwarz operator P associated with the 2-level decom- 
position (4.1) for the h-p version with quasi-uniform meshes has condition number 
bounded as 

T p(p) < C (c + log(p + 1))2. 

The positive constant C is independent of p. 
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For the multilevel method in the case of quasi-uniform meshes we also decompose 
the subspace V0 of piecewise constant functions by 

L 

(4.6) V = Vh1 + Z(Vhl,l + + 
V/7, 

). 
1=2 

Here, hi, I 1,... , L, is a sequence of mesh sizes as in ?3, i.e. hl1l = 2hl and 
hL= h, and Nh, is the number of elements of the mesh with size hl. In this case 
Vh1 is the space of piecewise constant functions on the coarse mesh with size h1 and 
Vh1j = span{Jbh1J } where 'Oh1j is the derivative of the hat function which takes 
the value 1 at the jth node and the value 0 at the other nodes of the mesh with 
size hl. These functions, which are called Haar basis functions, are orthogonal to 1 
in the L2 (r) inner product. Therefore the antiderivative operator I can be used to 
carry over the results from the multilevel h version for the hypersingular operator 
to the multilevel h version for the weakly singular operator. For more details we 
refer to [26]. The result is the following. 

Corollary 4.4. The additive Schwarz operator P associated with the multilevel 
decomposition given by the combination of (4.2) and (4.6) for the h-p version with 
quasi-uniform meshes has condition number bounded as 

6'(P) < C (p + 1) (I + log(p + 1))2. 

The positive constant C is independent of p and L. 

Proof. We apply Theorem 4.1 to a uniform polynomial degree distribution and a 
quasi-uniform mesh and note that the multilevel additive Schwarz preconditioner 
given by the decomposition (4.6) has bounded condition number independently of 
the number of levels L and the mesh size h, cf. [26, Theorem 3.10, Remark 3.11]. D 

5. NUMERICAL RESULTS 

In this section we present numerical results for the h-p version of the bound- 
ary element method for solving the weakly singular integral equation (2.2). The 
underlying problem is the Dirichlet problem for the L-shaped domain Q shown in 
Figure 1, 

-Au = 0 in Q, 

u = f on F = 1Q, 

where f is chosen such that 

U(X, Y) = (Z213) for z = x + iy. 

This problem is re-formulated to the integral equation (2.2). The finite dimen- 
sional subspace VAI of ft-i1/2 (r) is constructed by the affine images of the Legendre 
polynomials on each subinterval of F. We start with a uniform mesh consisting of 
8 elements of equal length on F. The sequence of subspaces VA/,I for the h-p version 
with quasi-uniform meshes is constructed by halving the elements and increasing 
the polynomial degrees by 1 from step to step. 

For the h-p version with geometric meshes we use a geometric mesh-grading just 
towards the reentrant corner since there occurs the only singularity in our example. 
On the remaining edges of the polygon F the mesh is identical to that of the p 
version. The polynomial degrees on the geometric mesh are increasing from 0 at 
(0, 0) up to K-I at (0, 1/2) and (1/2, 0). Again, K is the number of levels of 
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(041) 

(21,0) 

2~~~~~ ~ O) Q 

FIGURE 1. The L-shaped domain for the Dirichlet problem. 

P = 3 

3 

3 
2 

P=O'M 1 2 3 

3 3 

3 3 

FIGURE 2. A sample of the geometric mesh and the used polyno- 
mial degrees (K = 4, u- = 0.5). 

the geometric mesh, i.e. the number of elements on each of the edges attaching 
the reentrant corner. On the other edges the constant polynomial degree K - 1 
is used. A sample of the geometric mesh is shown in Figure 2. For more details 
and numerical results for the different versions of the boundary element method we 
refer to [11. 

Figures 3 and 4 show the condition numbers of the h-p version with quasi-uniform 
and geometric meshes, respectively. In both cases we present the numbers obtained 
by the 2-level and multilevel additive Schwarz preconditioners to compare with the 
numbers given by the unpreconditioned methods. The figures clearly demonstrate 
the improvement of the behavior of the condition numbers of the linear systems 
when a preconditioner is used, as expected from our theory. 
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10000 I 

w/o precond. < / 
2-level precond.+ 

1000 fully multilevel prec. - - 

100 ''' 

I I . . . . . . . . . . . . 

20 100 500 
Number of Unknowns 

FIGURE 3. The condition numbers for the h-p version with quasi- 
uniform meshes. 

le+05 w/o precond. ^p-- 
2-level precond. .+. 

multilevel precond. -E- 

le+04 

le+03 

le+02 

le+01 

20 100 
Number of Unknowns 

FIGURE 4. The condition numbers for the h-p version with geo- 
metric meshes (v = 0.5). 

Tables 2 and 3 present explicitly the condition numbers n of different additive 
Schwarz operators for the h-p version. The given numbers a reflect the numerically 
found "convergence rates" of the numbers n as predicted by the theory in the 
previous sections and collected in Table 1. More precisely, the a's are the computed 
numbers in the assumption n =iR where the R's are given in Table 1. 

Table 2 confirms the theoretical results for the h-p version with quasi-uniform 
meshes. In case of the 2-level method the growth of n in p is slower than linear 
and in case of the multilevel method faster than p and slower than p2. For the 
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TABLE 1. The theoretically expected behavior of the condition 
numbers Ki. 

BEM version precond. version Ki (theoretically) i Reference 
h-p, quasi-uniformly 2-level log2p p Cor. 4.3 

multilevel p log2 p p Cor. 4.4 
h-p, geom. mesh 2-level log2 K K Cor. 4.2 

multilevel K log2 K K Thm. 4.1 

TABLE 2. The condition numbers for the h-p version with quasi- 
uniform meshes. 

2-level multilevel 
M 4/h p K< a K a 

16 8 1 6.50 4.73 
0.55 1.01 

48 16 2 9.51 9.51 
0.35 1.42 

128 32 3 10.97 16.89 
0.67 1.54 

320 64 4 13.32 26.29 
0.34 1.38 

768 128 5 14.38 35.74 

TABLE 3. The condition numbers for the h-p version with geomet- 
ric meshes (o = 0.5). 

2-level multilevel 
M K K a K o a 

18 2 4.47 4.47 
0.65 0.87 

44 4 7.00 8.17 
0.57 0.88 

78 6 8.82 11.66 
0.53 0.90 

120 8 10.27 15.09 

multilevel preconditioner for the block of piecewise constant functions we use the 
mesh consisting of 8 elements as the coarse mesh, i.e. dim Vh1 = 8 in (4.6). 

The results for the h-p version with geometric meshes are shown in Table 3. 
For the 2-level preconditioner the a's are decreasing which is consisteAt with the 
logarithmic behavior in K of the condition number predicted by Corollary 4.2. Also 
for the multilevel method the computed condition numbers are in agreement with 
the theoretical bound ri(P) < CK log2 K given by Theorem 4.1. 
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